

Are our results reliable enough to support a conclusion?

Imagine we chose two children at random from two class rooms...

... and compare their height ...

REASON 1: There is a significant difference between the two groups, and pupils in room 2 are actually

REASON 2: By chance, we picked a short pupil from room 1 and a tall one from room 2

How do we decide which reason is most likely?

MEASURE MORE STUDENTS!!!

If there is a significant difference between the two groups...

... the mean height of the two groups should be very...

... DIFFERENT

2

If there is no significant difference between the two groups...

Remember:
Living things normally show

It is VERY unlikely that the mean height of our two samples will be exactly the same

Room 1

Average height $=162 \mathrm{~cm}$

Room 2

Average height $=168 \mathrm{~cm}$

Is the difference in average height of the samples large enough to be significant?

Student's t-test

The Student's t-test is a statistical test that compares the averages and standard deviations of two samples to see if there is a significant difference between them.

We start by calculating a number, t
t can be calculated using the equation:
$t=\frac{\left(\bar{x}_{1}-\bar{x}_{2}\right)}{\sqrt{\frac{\left(\mathrm{s}_{1}\right)^{2}}{n_{1}}+\frac{\left(\mathrm{s}_{2}\right)^{2}}{n_{2}}}}$ Where:
\bar{x}_{1} is the mean of sample 1
s_{1} is the standard deviation of sample 1
n_{1} is the sample size of sample 1
\bar{x}_{2} is the mean of sample 2
s_{2} is the standard deviation of sample 2
n_{2} is the sample size in sample 2

Worked Example: Random samples were taken of pupils in room 1 and room 2.

Their recorded heights are shown below...

	Students in Room 1					Students in Room 2				
Student Height (cm)	145	140	138	142	154	148	153	157	161	162
	154	158	160	166	166	162	163	167	172	172

	Students in Room 1					Students in Room 2				
Student	145	140	138	142	154	148	153	157	161	162
m)	154	158	160	166	166	162	163	167	172	172

Step 1: Calculate the mean height for each sample

$$
\dot{t}=\frac{\left|\overline{x_{1}}-\sqrt{x_{2}}\right|}{\sqrt{\frac{s_{1}^{2}}{y_{1}}}+\frac{s_{2}^{2}}{\sqrt[s]{2}_{2}^{2}}} \text { Room 1: } x_{1}=152.3 \mathrm{~cm}
$$

Step 2: Find the absolute value of the difference between the means

$$
t=\frac{\left|\bar{x}_{1}-\bar{x}_{2}\right|}{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}} \underset{x_{2}-x_{1}=161.7-152.3=9.4}{ }
$$

Step 3: Work out the standard deviation for each sample $t=\frac{\left|\bar{x}_{1}-\bar{x}_{2}\right|}{\sqrt[{{\sqrt{s_{1}}}^{2}}]{n_{1}}+\frac{\bar{s}_{2}^{2}}{n_{2}}}$

Room 1: $\mathrm{s}_{1}=10.48$ Room 2: $\mathrm{s}_{2}=7.66$

Step 4: Square the standard deviation for each group

Room 1: $s_{1}{ }^{2}=109.79$ Room 2: $s_{2}{ }^{2}=58.68$

Step 5:Divide each squared standard deviations by the sample size of that group.

Room 1: $109.79 \div 10 \ddagger 0.98$
Room 2: $58.68 \div 10=5.87$

Step 6: Add these two values.

$$
\pm=\frac{\left|\overline{x_{1}}-\bar{x}_{2}\right|}{\left|\frac{s_{1}^{2}}{\mu_{1}}+\frac{s_{2}^{2}}{y_{2}}\right|} 10.98+5.87=16.85
$$

Step 7: Take the square root of the number

$$
t=\frac{\left|\bar{x}_{1}-\bar{x}_{2}\right|}{\Gamma} \quad \sqrt{16.85}=4.10
$$

Step 8: divide the difference in the means (step 2) by the standard error of the difference (step 7)

Step 9: determine the degrees of freedom (df) for the test. In the t-test, the degrees of freedom is the sum of the sample sizes of both groups minus 2.

Step 10: Given the df, look up the critical t-value in a standard table of significance

Use the 95\% ($p=0.05$) confidence limit

df	. 10	. 05	. 025	. 01	. 005	. 000
1	3.078		12.706	31.821	63.657	636.619
	1.886		4.303	6.965	9.925	31.598
	1.630	. 353	3.182	4.541	5.841	12.941
4	1.533	2.132	2.776	3.747	4.604	8.610
5	1.476	2.015	2.571	3.365	4.032	6.859
6	1.440	1.943	2.447	3.143	3.707	5.959
7	1.415	1.895	2.365	2.998	3.499	5.405
8	1.397	1.860	2.306	2.896	3.355	5.041
9	1.383	1.833	2.262	2.821	3.250	4.781
10	1.372	1.812	2.228	2.764	3.169	4.587
11	1.363	1.796	2.201	2.718	3.106	4.437
12	1.356	1.782	2.179	2.681	3.055	4.318
13	1.350	1.771	2.160	2.650	3.012	4.221
14	1.345	1.761	2.145	2.624	2.977	4.140
15	1.341	1.753	2.131	2.602	2.947	4.073
16	1.337	1.746	2.120	2.583	2.921	4.015
17	1.333	通	2.110	2.567	2.898	3.965
18	1.330	1.734	2.101	2.552	2.878	3.922
19	1.328		2.093	2.539	2.861	3.883
20	1.325	1.725	2.086	2.528	2.845	3.850

SO WHAT?

- If your calculated \mathbf{t} value is less than the number in the table, you conclude that the difference between the means for the two groups is NOT significantly different.
- If your calculated t value is greater than the number in the table, you conclude that the difference between the means for the two groups is significantly different.

Calculated t -value $=2.28$ Critical t - value = 1.734

Our calculated value of t is above the critical value, therefore, there is a significant difference between the height of students in samples from room 1 and Room 2

Do not worry if you do not understand how or why the test works

$$
\begin{aligned}
& \text { Follow the } \\
& \text { instructions } \\
& \text { CAREFULLY }
\end{aligned}
$$

